首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11754篇
  免费   1151篇
  国内免费   399篇
电工技术   291篇
综合类   956篇
化学工业   4154篇
金属工艺   465篇
机械仪表   441篇
建筑科学   1358篇
矿业工程   612篇
能源动力   493篇
轻工业   720篇
水利工程   387篇
石油天然气   784篇
武器工业   30篇
无线电   381篇
一般工业技术   674篇
冶金工业   849篇
原子能技术   233篇
自动化技术   476篇
  2024年   34篇
  2023年   150篇
  2022年   342篇
  2021年   379篇
  2020年   448篇
  2019年   380篇
  2018年   340篇
  2017年   396篇
  2016年   420篇
  2015年   454篇
  2014年   683篇
  2013年   774篇
  2012年   951篇
  2011年   891篇
  2010年   729篇
  2009年   760篇
  2008年   579篇
  2007年   754篇
  2006年   670篇
  2005年   551篇
  2004年   454篇
  2003年   403篇
  2002年   331篇
  2001年   274篇
  2000年   224篇
  1999年   182篇
  1998年   138篇
  1997年   121篇
  1996年   89篇
  1995年   76篇
  1994年   56篇
  1993年   40篇
  1992年   41篇
  1991年   34篇
  1990年   25篇
  1989年   17篇
  1988年   12篇
  1987年   28篇
  1986年   14篇
  1985年   19篇
  1984年   21篇
  1983年   10篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1976年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
《Ceramics International》2022,48(21):31695-31704
In this study, ceramic membranes made of montmorillonite, perlite and iron were used to remove As(III) from water. Membranes prepared with 0.0, 0.5, 1.0, and 1.5 wt% of iron content were used to filtrate As(III) synthetic water and surface water solutions. As(III) adsorption capacity and removal efficiency, and other parameters such as cations and anions content, turbidity, pH, electrical conductivity were used to evaluate the membranes' performance. Results show that the As(III) adsorption/removal capacity of membranes was improved by the addition of iron. Adsorption capacity of 7.5 μg As(III)/g and removal efficiency of 97% can be achieved in membranes with 1.0 wt% of iron filings content for surface water; however, a greater amount of iron in the membrane structure limits the adsorption capacity of As(III). Besides the capacity of ceramic membranes to adsorb/remove As(III), membranes were also effective to remove other ions, turbidity, and electrical conductivity from the surface water. The addition of iron to the ceramic membranes enhanced their capacity to remove such surface water constituents. These results are important from the practical viewpoint showing the potential of ceramic membranes for the removal of metalloids and other water constituents. Langmuir isotherm model best described the adsorption process in ceramic membranes, suggesting that adsorption of As(III) happened on a monolayered surface of the ceramic membrane.  相似文献   
3.
The performance of Microbial electrolysis cell (MEC) is affected by several operating conditions. Therefore, in the present study, an optimization study was done to determine the working efficiency of MEC in terms of COD (chemical oxygen demand) removal, hydrogen and current generation. Optimization was carried out using a quadratic mathematical model of response surface methodology (RSM). Thirteen sets of experimental runs were performed to optimize the applied voltage and hydraulic retention time (HRT) of single chambered batch fed MEC operated with dairy industry wastewater. The operating conditions (i.e) an applied voltage of 0.8 V and HRT of 2 days that showed a maximum COD removal response was chosen for further studies. The MEC operated at optimized condition (HRT- 2 days and applied voltage- 0.8 V) showed a COD removal efficiency of 95 ± 2%, hydrogen generation of 32 ± 5 mL/L/d, Power density of 152 mW/cm2 and current generation of 19 mA. The results of the study implied that RSM, with its high degree of accuracy can be a reliable tool for optimizing the process of wastewater treatment. Also, dairy industry wastewater can be considered to be a potential source to generate hydrogen and energy through MEC at short HRT.  相似文献   
4.
ABSTRACT

A series of batch contact tests were conducted to evaluate the exchange behavior of Ba, Ca, Pb, and Sr onto crystalline silicotitanate (CST) in support of an expedited Cs removal and pretreatment system at the Hanford site. Binary Na/M2+ and ternary Na/Cs/M2+ isotherms were generated to understand selectivity, capacity, and competitive impact of each analyte on Cs uptake from a simple 1 M NaOH/4.6 M NaNO3 simulant. Analyte loading from a 0.1 M NaOH/5.5 M NaNO3 simulant was assessed to determine the effect of hydroxide concentration on binary Na/M2+ isotherms. Results from binary and ternary isotherms indicated that Group II metals Ca, Sr, and Ba (and Pb) do not impact CST performance toward Cs removal at concentrations expected in Hanford tank-waste supernate.  相似文献   
5.
《Ceramics International》2022,48(21):31478-31490
Considering the great importance of nanocomposite based photo-active nanomaterials for a variety of electronics, photonics and photovoltaics application, it is always worth considering to synthesize new hetreostructure. This paper describes the sol-gel and hydrothermal synthesis of metal (holmium, barium, and cadmium) doped TiO2/CdS nanocomposites for photoanode applications. Various characterization techniques, including XRD, FTIR, UV–VIS, EDX, and SEM were used to examine the synthesized heterostructures. The band gap of pure TiO2 NPs is 3.10 eV, which was effectively decreased to 2.16 eV by doping and coupling with CdS. The nanomaterial's crystallinity, crystallite size, morphology and elemental composition were determined by XRD, SEM and EDX, respectively. As sensitizers, the organic dyes dithizone, carminic acid, and pyrocatechol violet were used. FTIR was used to analyze the effective dye grafting on the surface of nanomaterials. In the presence of hole conducting P3HT polymer as solid state electrolyte, the sensitized materials were evaluated for solid state dye-sensitized solar cells. Compared to the reference device, Cd–TiO2/CdS photosensitized using Pyrocatechol violet dye demonstrated the highest efficiency of 2.68% (0.82%). Other parameters of this device, including open circuit voltage (Voc) and short circuit current (Jsc), were determined to be 16.97 mA cm2 and 0.41V, respectively.  相似文献   
6.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
7.
《Ceramics International》2022,48(7):9651-9657
Friction is a common clean energy and can be harvested and converted into electricity energy via triboelectricity, which can electrochemically drive dye decomposition in theory. In this work, the tribocatalytic Rhodamine B dye decomposition has been experimentally realized in strontium titanate (SrTiO3) nanofibers, which are synthesized via a hydrothermal method. In the tribocatalytic dye decomposition process, the friction is exerted in the interface between catalyst surface and a polytetrafluoroethylene (PTFE) Teflon rod setup with the different stirring speed. The RhB dye decomposition ratios of SrTiO3 nanofibers at these stirring speeds of 200 rpm, 400 rpm, 600 rpm, and 800 rpm are respectively 24.2%, 51.8%, 73.9% and 88.6%, yielding to these reaction rate constants of ~0.0112 h?1, ~0.0260 h?1, ~0.0562 h?1 and ~0.0877 h?1. The main active species, which play an important role in tribocatalytic process, are the superoxide radicals and holes on basis of the active species quenching experiment results. The excellent tribocatalysis activity makes SrTiO3 nanofibers potential for application in dye wastewater treatment through utilizing the environmental friction energy.  相似文献   
8.
为满足电子半导体等领域对SiC超光滑、无损伤和材料高效去除的要求,提出了电助光催化抛光SiC的新方法。研究了光催化剂种类及其pH值对抛光液氧化性和抛光效果的影响,讨论了材料的去除机理。结果表明:以p25型TiO2为光催化剂配制抛光液所获得的最大氧化还原电位为633.11 mV,材料去除率为1.18 μm/h,表面粗糙度Ra=0.218 nm;抛光后SiC表面氧化产物中,Si-C-O、Si-O和Si4C4O4的含量明显增加,SiC表面被氧化并被机械去除是主要的材料去除方式。  相似文献   
9.
徐勇  陈青柏  王建友 《化工进展》2020,39(z2):319-328
离子交换法是目前最常见的水软化技术之一,其基于可逆的离子交换反应将溶液中的硬度离子选择性去除,属于典型的特种分离过程。本文介绍并总结了离子交换水软化的基本原理、水软化用离子交换树脂的结构和分类、离子交换水软化技术研究和应用,并针对离子交换水软化存在的问题提出了相应的解决思路。  相似文献   
10.
Full aperture continuous polishing using pitch lap is a key process of finishing large flat optical workpiece. The friction force of the workpiece and pitch lap interface significantly affects material removal. In this work, the friction force was determined by a measurement system that uses force transducers to support the workpiece. Experimental and theoretical analyses have been carried out to investigate the evolution of friction force with polishing time and its effect on material removal. Our results show that the friction coefficient of the workpiece/lap interface decreases during polishing, which is due to surface smoothing of the viscoelastic pitch lap by loading conditioner. In addition, the spatial average and uniformity of material removal rate (removal coefficient) increases with the increase of friction coefficient, which is due to rough lap surface, provides more sharp asperities to charge the polishing particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号